- 1) Given that the initial and terminal points of \vec{v} are (3,2,0) and (4,1,6) respectively find the following:
 - a) Component form of \vec{v} .
 - $\|\vec{v}\|$ b)
 - c) A unit vector in the direction of \vec{v} .
 - d) Write the vector using standard unit vector notation.

 - b)
- 2) Find each scalar multiple of $\vec{v} = \langle 1, 2, 2 \rangle$.

- 3) Find vector \vec{z} , given that $\vec{u} = \langle 1, 2, 3 \rangle$, $\vec{v} = \langle 2, 2, -1 \rangle$, and $\vec{w} = \langle 4, 0, -4 \rangle$.
 - a) $\vec{z} = \vec{u} \vec{v}$

- b) $\vec{z} = 2\vec{u} + 4\vec{v} \vec{w}$ (6,12,6)c) $2\vec{u} + \vec{v} \vec{w} + 3\vec{z} = 0$ (0,-2,-3)

- 4) Determine which of the vectors is (are) parallel to \vec{z} $\vec{z} = \langle 3, 2, -5 \rangle$
 - a) $\langle -6, -4, 10 \rangle$
- a) and b)
- b) $\left< 2, \frac{4}{3}, -\frac{10}{3} \right>$
- c) $\langle 6,4,10 \rangle$
- d) $\langle 1, -4, 2 \rangle$

5) Use vectors to determine whether the points (0,-2,-5) , (3,4,4) , (2,2,1) are collinear.

Yes

6) Use vectors to show that the points (2,9,1), (3,11,4), (0,10,2), (1,12,5) form the vertices of a parallelogram.

Show that two pairs of vectors are parallel and opposite facing vectors have the same length.

7) Determine the values of c that satisfy the equation $||c\vec{v}|| = 7$. Let $\vec{v} = 2\mathbf{i} + 2\mathbf{j} - \mathbf{k}$

 $c = \pm \frac{7}{3}$

8) Find the vector \vec{v} with a magnitude of 10 and in the same direction as $\vec{u} = \langle 0, 3, 3 \rangle$.

$$\left\langle 0, \frac{10}{\sqrt{2}}, \frac{10}{\sqrt{2}} \right\rangle$$

9) \vec{v} lies in the yz-plane, has magnitude 2, and makes an angle of 30° with the positive y-axis. Write the component form of \vec{v} .

$$\langle 0, \sqrt{3}, \pm 1 \rangle$$

- 10) Let $\vec{u} = \mathbf{i} + \mathbf{j}$, $\vec{v} = \mathbf{j} + \mathbf{k}$, and $\vec{w} = a\vec{u} + b\vec{v}$.
 - a) If $\vec{w} = 0$, show that a and b must both be zero.
 - b) Find a and b such that $\vec{w} = \mathbf{i} + 2\mathbf{j} + \mathbf{k}$.
 - c) Show that no choice of a and b yields $\vec{w} = \mathbf{i} + 2\mathbf{j} + 3\mathbf{k}$.
 - a) Show
 - b) a = 1, b = 1
 - c) Show