1) Given that that the initial and terminal points of \vec{v} are $(3,2,0)$ and $(4,1,6)$ respectively find the following:
a) Component form of \vec{v}.
b) $\|\vec{v}\|$
c) A unit vector in the direction of \vec{v}.
d) Write the vector using standard unit vector notation.
a) $\langle 1,-1,6\rangle$
b) $\sqrt{38}$
c) $\left\langle\frac{1}{\sqrt{38}}, \frac{-1}{\sqrt{38}}, \frac{6}{\sqrt{38}}\right\rangle$
d) $\mathbf{i}-\mathbf{j}+6 \mathbf{k}$
2) Find each scalar multiple of $\vec{v}=\langle 1,2,2\rangle$.
a) $2 \vec{v}\langle 2,4,4\rangle$
b) $-\vec{v}\langle-1,-2,-2\rangle$
c) $0 \vec{v} \quad\langle 0,0,0\rangle$
d) $\frac{3}{2} \vec{v}\left\langle\frac{3}{2}, 3,3\right\rangle$
3) Find vector \vec{z}, given that $\vec{u}=\langle 1,2,3\rangle, \vec{v}=\langle 2,2,-1\rangle$, and $\vec{w}=\langle 4,0,-4\rangle$.
a) $\vec{z}=\vec{u}-\vec{v}$ $\langle-1,0,4\rangle$
b) $\vec{z}=2 \vec{u}+4 \vec{v}-\vec{w}$
$\langle 6,12,6\rangle$
c) $2 \vec{u}+\vec{v}-\vec{w}+3 \vec{z}=0$
$\langle 0,-2,-3\rangle$
4) Determine which of the vectors is (are) parallel to $\vec{z} \vec{z}=\langle 3,2,-5\rangle$
a) $\langle-6,-4,10\rangle \quad a)$ and b)
b) $\left\langle 2, \frac{4}{3},-\frac{10}{3}\right\rangle$
c) $\langle 6,4,10\rangle$
d) $\langle 1,-4,2\rangle$
5) Use vectors to determine whether the points $(0,-2,-5),(3,4,4),(2,2,1)$ are collinear.

Yes

6) Use vectors to show that the points $(2,9,1),(3,11,4),(0,10,2),(1,12,5)$ form the vertices of a parallelogram.

Show that two pairs of vectors are parallel and opposite facing vectors have the same length.
7) Determine the values of c that satisfy the equation $\|c \vec{v}\|=7$. Let $\vec{v}=2 \mathbf{i}+2 \mathbf{j}-\mathbf{k}$

$$
c= \pm \frac{7}{3}
$$

8) Find the vector \vec{v} with a magnitude of 10 and in the same direction as $\vec{u}=\langle 0,3,3\rangle$.

$$
\left\langle 0, \frac{10}{\sqrt{2}}, \frac{10}{\sqrt{2}}\right\rangle
$$

9) \vec{v} lies in the $y z$ - plane, has magnitude 2 , and makes an angle of 30° with the positive y-axis. Write the component form of \vec{v}.

$$
\langle 0, \sqrt{3}, \pm 1\rangle
$$

10) Let $\vec{u}=\mathbf{i}+\mathbf{j}, \vec{v}=\mathbf{j}+\mathbf{k}$, and $\vec{w}=a \vec{u}+b \vec{v}$.
a) If $\vec{w}=0$, show that a and b must both be zero.
b) Find a and b such that $\vec{w}=\mathbf{i}+2 \mathbf{j}+\mathbf{k}$.
c) Show that no choice of a and b yields $\vec{w}=\mathbf{i}+2 \mathbf{j}+3 \mathbf{k}$.
a) Show
b) $a=1, b=1$
c) Show
